Correction DS1S01 - 1BACSM de: Prof HIYAB

Par : Prof MOSAID

1 Exercice 1

1. Soit
$$P: \forall (x,y) \in \mathbb{R}^2 \ 2xy \le \frac{x^2 + 4y^2}{2}$$

On a $\overline{P}: \exists (x,y) \in \mathbb{R}^2 \ 2xy > \frac{x^2 + 4y^2}{2}$
Soit $Q: \exists x \in \mathbb{R}: \ x^2 + 9x - 36$
On a $\Delta = 9^2 - 4(1)(-36) = 225 = 15^2$

Donc ils existent deux reels qui vérifie la propositon, donc vraie

b. On a

$$2xy \le \frac{x^2 + 4y^2}{2} \iff 4xy \le x^2 + 4y^2$$

$$\iff 0 \le x^2 + 4y^2 - 4xy$$

$$\iff 0 \le (x - 2y)^2$$

la dérnière proposition est $\forall x,y\in\mathbb{R}$ donc $P: \ \forall (x,y)\in\mathbb{R}^2 \ \ 2xy\leq \frac{x^2+4y^2}{2}$ est vraie Soient $x,y,z\in\mathbb{R}$, on a :

$$4xy \le x^2 + 4y^2$$

$$4yz \le y^2 + 4z^2$$

$$4zx \le z^2 + 4x^2$$

 $\implies 4xy \cdot 4yz \cdot 4zx \le (x^2 + 4y^2)(y^2 + 4z^2)(z^2 + 4x^2)$

car les cotés droits des inégalités sont positifs Ainsi $(8xyz)^2 \le (x^2 + 4y^2)(y^2 + 4z^2)(z^2 + 4x^2)$

2.a Soit $n \in \mathbb{N}$ un entier naturel, on a n est n+1 sont consécutifs

Si
$$n$$
 est pair, donc il exist $k \in \mathbb{N}$ tel que $n=2k$ alors $n(n+1)=2k(2k+1)$ est pair
Si n est impair, donc il exist $k \in \mathbb{N}$ tel que $n=2k+1$ $n(n+1)=(2k+1)(2k+1+1)$ $=(2k+1)(2k+2)$ $=(2k+1)(2(k+1))$ $=2(2k+1)(k+1)$

est pair

Ainsi, quel que soit l'entier n, le produit n(n+1) est pair

b. Montrer par contraposée que

 $\forall n \in \mathbb{N}: (n^2-1)$ n'est pas divisible par $8 \implies n$ est pair

c-à-d On montre que

 $n \ est \ impair \implies n \ est \ divisible \ par \ 8$

Soit n un entier impair, donc $n = 2k + 1, k \in \mathbb{N}$

$$n^{2} - 1 = (2k + 1)^{2} - 1$$

$$= 4k^{2} + 4k + 1 - 1$$

$$= 4k^{2} + 4k$$

$$= 4k(k + 1)$$

$$= 4 \cdot 2k' \quad car \quad k(k + 1)estpair$$

$$= 8k'$$

Donc $\forall n \in \mathbb{N}$:

 (n^2-1) n'est pas divisible par $8 \implies n$ est pair

3. Résoudre dans \mathbb{R} l'équation :

$$(E): \sqrt{2x-3} = \frac{6-x}{\sqrt{x}}$$

L'équation (E) a un sens ssi $2x - 3 \ge 0$ et $x \ne 0$ c-à-d $x \ge \frac{3}{2}$ et $x \ne 0$

Soit
$$x \in \left[\frac{3}{2}, +\infty\right[$$
:

• si 6-x < 0 c-à-d x > 6 l'équation est impossible.

• si
$$x \in \left[\frac{3}{2}, 6\right]$$

$$(E) \iff 2x - 3 = \frac{(6 - x)^2}{x}$$

$$\iff 2x^2 - 3x = 36 - 12x + x^2$$

$$\iff x^2 + 9x - 36 = 0$$

$$\iff x = \frac{-9 - 15}{2} \quad ou \quad x = \frac{-9 + 15}{2}$$

$$\iff x = -12 \quad ou \quad x = 3$$

Alors l'ensemble des solutions de (E) est $S = \{3\}$

4. Montrer que : $(\forall n \in \mathbb{N})$ $\sum_{k=0}^{n} (2k+1) = (n+1)^2$ On procède par récurrence:

• pour n=0 : $2\times 0+1=0+1$ est vrai, donc la propositon est vraie pour n=0

On suppose que $\sum_{k=0}^{n} (2k+1) = (n+1)^2$ et on montre que: $\sum_{k=0}^{n+1} (2k+1) = (n+2)^2$

On a

$$\sum_{k=0}^{n+1} (2k+1) = \sum_{k=0}^{n} (2k+1) + 2(n+1) + 1$$
$$= (n+1)^{2} + 2(n+1) + 1$$
$$= (n+1+1)^{2}$$
$$= (n+2)^{2}$$

• Conclusion $(\forall n \in \mathbb{N})$ $\sum_{k=0}^{n} (2k+1) = (n+1)^2$

5. Soient A et B deux parties d'un ensemble E.

Exprimer à l'aide de quantificateurs la proposition $R:A\subset B.$

$$\forall x \in E; \ x \in A \implies x \in B$$

6.a Montrer que $(\forall n \in \mathbb{N}^*)$ $\sqrt{n^2 + 2n} \notin \mathbb{N}$.

On a
$$n^2 < n^2 + 2n < n^2 + 2n + 1$$

Donc
$$n^2 < n^2 + 2n < (n+1)^2$$

Ainsi
$$n < \sqrt{n^2 + 2n} < n + 1$$

Alors $\sqrt{n^2 + 2n}$ ne peut pas etre un entier car il est compris entre deux entiers consécutifs

b. Montrer que $(\forall n \in \mathbb{N}^*)$ $\sqrt{\frac{n}{n+2}} \notin \mathbb{Q}$. On a

$$\sqrt{\frac{n}{n+2}} = \sqrt{\frac{n(n+2)}{(n+2)^2}} = \frac{1}{n+2}\sqrt{n^2+2n}$$

 $\sqrt{\frac{n}{n+2}} \in \mathbb{Q}$ ssi $\sqrt{n^2+2n} \in \mathbb{N}$ ce qui est impossible selon la question b.a

donc

$$(\forall n \in \mathbb{N}^*) \quad \sqrt{\frac{n}{n+2}} \notin \mathbb{Q}.$$

méthode 2:

Supposant qu'il existe
$$(a,b) \in \mathbb{N} \times \mathbb{N}^*$$
 tel que $\sqrt{\frac{n}{n+2}} = \frac{a}{b} \Longrightarrow \frac{n}{n+2} = \frac{a}{b}$

$$\implies nb^2 = na^2 + 2a^2$$

$$\implies nb^2 - na^2 = 2a^2$$

$$\implies n(b^2 - a^2) = 2a^2$$

$$\implies n = \frac{2a^2}{b^2 - a^2}$$

$$\implies b^2 - a^2 \mid a^2 \text{ ou } b^2 - a^2 \mid 2$$

Si $b^2 - a^2$ divise a^2 , alors b^2 divise a^2 . $\implies b^2 \mid a^2 \quad \text{ou} \quad b^2 - a^2 \mid 2$

 b^2 ne peut pas diviser a^2 car $pgcd(a^2,b^2)=1$ (puisque $\frac{a}{b}$ est irréductible, $\frac{a^2}{b^2}$ est aussi irréductible). Ainsi, $b^2-a^2\mid 2\implies b^2-a^2\in\{1,2\}.$

$$Si \ b^2 - a^2 = 1 \implies (b - a)(b + a) = 1$$

$$\implies \begin{cases} b - a = 1 \\ b + a = 1 \end{cases}$$

$$\implies a = 0 \ et \ b = 1$$

 $ce\ qui\ est\ impossible.$

$$Si \ b^2 - a^2 = 2 \implies (b - a)(b + a) = 2$$

$$\implies \begin{cases} b - a = 1 \\ b + a = 2 \end{cases}$$

$$\implies b = 1.5 \ et \ a = 0.5$$

$$ce \ qui \ est \ impossible.$$

Conclusion
$$(\forall n \in \mathbb{N}^*): \sqrt{\frac{n}{n+2}} \notin \mathbb{Q}$$

2 Exercice 2

Montrer que : $A = (A \cup B) \setminus (B \setminus A)$

méthode 1:

Remarquer que $A \setminus B = A \cap \overline{B}$

$$(A \cup B) \setminus (B \setminus A) = (A \cup B) \setminus (B \cap \overline{A})$$

$$= (A \cup B) \cap \overline{B \cap \overline{A}}$$

$$= (A \cup B) \cap (\overline{B} \cup A)$$

$$= (A \cup B) \cap (A \cup \overline{B})$$

$$= A \cup (B \cap \overline{B})$$

$$= A \cup \emptyset$$

$$= A$$

méthode 2:

 $x \in A \implies x \in A \cup B \ et \ x \notin B \setminus A$

car $x \in A$ et x ne peux pas appartenir à B sans appartenir à A

donc
$$x \in (A \cup B) \setminus (B \setminus A)$$

Ainsi $A \subset (A \cup B) \setminus (B \setminus A)$ (1)
On a

 $x \in (A \cup B) \setminus (B \setminus A) \implies x \in A \cup B \text{ et } x \notin (B \setminus A)$ puisque $x \in (A \cup B)$ alors $x \in A$ ou $x \in B$

- Si $x \in A$ c'est notre but
- Si $x \in B$

alors $x \notin (B \setminus A)$ implique que $x \in A$

parce que
$$x \notin (B \setminus A) \iff x \notin (B \cap \overline{A})$$

autrement dit : $x \notin B$ et $x \notin \overline{A}$

Ainsi
$$(A \cup B) \setminus (B \setminus A) \subset A$$
 (2)

De (1) et (2), on conclut que $A = (A \cup B) \setminus (B \setminus A)$.

On a

$$A \setminus (A \cap B) = A \cap \overline{A \cap B}$$

$$= A \cap (\overline{A} \cup \overline{B})$$

$$= (A \cap \overline{A}) \cup (A \cap \overline{B})$$

$$= \emptyset \cup (A \cap \overline{B})$$

$$= A \cap \overline{B}$$

$$= A \setminus B$$

1.b On a

$$A \cup B = \{1; 2; 3; \dots; 11\}$$
; $A \cap B = \{4; 5; 6; 11\}$ et $B \setminus A = \{7; 8; 9; 10\}$

Déterminer et justifier les ensembles : A, $A \setminus B$ et $A \triangle B$.

On a
$$A = (A \cup B) \setminus (B \setminus A)$$

Donc $A = \{1, 2, 3, 4, 5, 6, 11\}$

On a
$$A \setminus B = A \setminus (A \cap B)$$

Donc
$$A \setminus B = \{1, 2, 3\}$$

rappel
$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

donc
$$A\triangle B = \{1, 2, 3, 7, 8, 9, 10\}$$

2. On a
$$C = \left\{ \frac{19\pi}{10} + \frac{k\pi}{5} \mid k \in \mathbb{Z} \right\}$$
 Donc $x \in C \iff x = \frac{19\pi}{10} + \frac{k\pi}{5} \quad ; \quad k \in \mathbb{Z}$ $\iff x = \frac{1}{10} \left(19\pi + 2k\pi \right) \quad ; \quad k \in \mathbb{Z}$ $\iff x = \frac{1}{10} \left(-3\pi + 20\pi + 2\pi + 2k\pi \right)$ $\iff x = \frac{1}{10} \left(-3\pi + 20\pi + 2(k+1)\pi \right)$ $\iff x = \frac{-3\pi}{10} + 2\pi + \frac{(k+1)\pi}{5}$ $\iff x = \frac{-3\pi}{10} + \frac{(k')\pi}{5} \quad ; \quad k' = k+1 \in \mathbb{Z}$ $\iff x \in D$ $\iff x \in D$

Alors C=D Note: Peut etre le prof a fait une faute de frappe ici, je ne vois pas l'interet à changer $+k\pi$ en $-k\pi$

3 Exercice 3

1. a On a
$$A \cap B \subset A$$
 et $A \subset A \cup B$ donc $A \cap B \subset A \cup B$ b. On a $(A \triangle B) \cup (\overline{A} \cup \overline{B}) = (A \setminus B \cup B \setminus A) \cup (\overline{A} \cap \overline{B})$ $= [(A \cap \overline{B}) \cup (B \cap \overline{A})] \cup (\overline{A} \cap \overline{B})$ U commutatif $= (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B}) \cup (B \cap \overline{A})$ $= \overline{B} \cap (A \cup \overline{A}) \cup (B \cap \overline{A})$ $= (\overline{B} \cap E) \cup (B \cap \overline{A})$ $= (\overline{B} \cup B) \cap (\overline{B} \cup \overline{A})$ $= E \cap (\overline{B} \cup \overline{A})$ $= \overline{B} \cup \overline{A}$ $= \overline{B} \cup \overline{A}$ ou $(A \triangle B) \cup (\overline{A} \cup \overline{B}) = (A \setminus B \cup B \setminus A) \cup (\overline{A} \cap \overline{B})$

$$(A\triangle B) \cup (\overline{A \cup B}) = (A \setminus B \cup B \setminus A) \cup (\overline{A} \cap \overline{B})$$
$$= [(A \cap \overline{B}) \cup (B \cap \overline{A})] \cup (\overline{A} \cap \overline{B})$$
$$U \ associatif = (A \cap \overline{B}) \cup [(B \cap \overline{A}) \cup (\overline{A} \cap \overline{B})]$$

$$= (A \cap \overline{B}) \cup [\overline{A} \cap (B \cup \overline{B})]$$

$$= (A \cap \overline{B}) \cup (\overline{A} \cap E)$$

$$= (A \cap \overline{B}) \cup \overline{A}$$

$$= (A \cup \overline{A}) \cap (\overline{B} \cup \overline{A})$$

$$= E \cap (\overline{B} \cup \overline{A})$$

$$= \overline{B} \cup \overline{A}$$

 $= \overline{B \cap A}$

c. On a
$$\begin{cases} (B \setminus C) \subset A \\ (C \setminus D) \subset A \end{cases} \implies \begin{cases} (B \cap \overline{C}) \subset A \\ (C \cap \overline{D}) \subset A \end{cases}$$
$$\implies \begin{cases} B \subset A & et \ \overline{C} \subset A \\ C \subset A & et \ \overline{D} \subset A \end{cases}$$
$$\implies B \subset A & et \ \overline{D} \subset A \end{cases}$$
$$\implies (B \cap \overline{D}) \subset A$$
$$\implies (B \setminus D) \subset A$$

2. On suppose dans cette question que:

$$A = \{2k + 6 \mid k \in \mathbb{Z}\} \text{ et } B = \{2k + 3 \mid k \in \mathbb{Z}\}$$

Montrer que $\mathbb{Z} \subset (A \cup B)$ et en déduire que $A \cup B = \mathbb{Z}$.

On a $A = \{2k + 6, k \in \mathbb{Z}\}$

c-à-d $A = \{2(k+3), k \in \mathbb{Z}\}$ c'est l'ensemble des entiers relatifs pairs

On a $B = \{2k+3, k \in \mathbb{Z}\}$

c-à-d $B = \{2(k+1) + 1, k \in \mathbb{Z}\}$ c'est l'ensemble des entiers relatifs impairs

 $A \cup B$ est l'ensemble des entiers relatifs pairs et impairs

il est evident que
$$\mathbb{Z} \subset (A \cup B)$$
 (1)

puisque
$$A \subset \mathbb{Z}$$
 et $B \subset \mathbb{Z}$ alors $(A \cup B) \subset \mathbb{Z}$ (2)

De (1) et (2) on déduit que $\mathbb{Z} = A \cup B$

3. On a:

$$A = \{(x, y) \in \mathbb{R}^2 \mid x - 2y = 1\} \text{ et } B = \{(3 + 2t; 1 + t) \mid t \in \mathbb{R}\}$$

- pour t = 1: 3 + 2(1) = 5 et 1 + 1 = 2 donc $(5, 2) \in B$
- pour t = 0 on a 3 + 2(0) = 3 et 1 + 0 = 1 donc $(3, 1) \in B$

On a 3-2(1)=1 donc $(3,1) \in A$

Ainsi, $(3,1) \in A \cap B$

note:

si l'etudiant n'a pas remarquer les valeurs de t, il suffit de résoudre les équations 3+2t=5 et 1+t=2 et trouver une seule valeur de t

On a
$$(x,y) \in B \iff \begin{cases} x = 3 + 2t \\ y = 1 + t \end{cases} \iff \begin{cases} x = 3 + 2t \\ 2y = 2 + 2t \end{cases} \iff x - 2y = 1 \iff (x,y) \in A$$

Ainsi A = B

On a $(0,0) \notin A$ donc $\mathbb{R}^2 \not\subset A$

In October 22, 2025, by MOSAID